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1. Introduction
We give a concrete introduction to an important theorem in dynamical sys-

tems known as Liouville’s theorem. Well-known to physicists and fundamental
in the field of statistical mechanics, this theorem has been widely applied—for
instance, to study the focusing of charged particle beams by accelerators and
to determine the potential function of the galactic gravitational field from the
distribution of stars [Marion and Thornton 1995].

We begin by providing pertinent background on Euler’s equation in the cal-
culus of variations (Section 2) and on Hamiltonian dynamics and phase space
(Section 3). We then derive Liouville’s theorem in two dimensions (Section 4),
the more general 2N -dimensional case being proved in a similar manner. The
dynamics of three freely-falling balls helps to visualize an important fact related
to Liouville’s theorem, namely, the incompressibility of an energy-conserving
flow through phase space (Section 5). We conclude with further mention of
the theorem’s applications (Section 6).

2. Euler’s Equation from the Calculus of
Variations

Hamilton’s principle, a fundamental insight in basic classical dynamics, posits
that

an object moves in such a way that the time integral of the difference
between its kinetic and potential energies is minimized

[Marion and Thornton 1995].

We explain how the calculus of variations is used to minimize such integrals.
First, consider an integral of the form

J =
∫ t2

t1

f{y(t), ẏ(t); t} dt,

where y and ẏ = dy/dt both depend on t. Our goal is to find a function y = y0(t)
that minimizes J . For example, let us take f{y, ẏ; t} =

√
1 + (ẏ)2, t1 = 0, t2 = 1,

so that

J =
∫ 1

0

√
1 + (ẏ)2 dt.

If we specify further that y(0) = 0 and y(1) = 1, then J gives the length of the
graph of a differentiable function y = f(t) that passes through the points (0, 0)
and (1, 1). In this case, we know that the function that minimizes J must be
y0(t) = t, since the shortest distance between two points is a straight line.

To arrive at this conclusion by means of a calculus-of-variations approach,
we begin by setting

y = y(α, t) = y0(t) + αη(t).

1
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Here η(t) is an arbitrary differentiable function defined on t1 ≤ t ≤ t2 that
satisfies

η(t1) = η(t2) = 0.

For every real number α, the function y agrees with the unknown optimizing
function y0(t) at the endpoints t = t1 and t = t2, but it may vary from y0(t) in
the interval t1 < t < t2. Note that y and ẏ are now functions of both t and α,
with ∂y/∂α = η(t) and ∂ẏ/∂α = η′(t). The integral J must also depend on α:

J = J(α) =
∫ t2

t1

f{y(α, t), ẏ(α, t); t} dt,

and we have

∂J

∂α
=

∫ t2

t1

∂

∂α
[f{y, ẏ; t}] dt

=
∫ t2

t1

(
∂f

∂y

∂y

∂α
+

∂f

∂ẏ

∂ẏ

∂α

)
dt

=
∫ t2

t1

(
∂f

∂y
η(t) +

∂f

∂ẏ
η′(t)

)
dt.

Using integration by parts, we get

∂J

∂α
=

∫ t2

t1

∂f

∂y
η(t) dt + η(t)

∂f

∂ẏ

∣∣∣∣
t2

t1

−
∫ t2

t1

η(t)
d

dt

[
∂f

∂ẏ

]
dt.

Because η(t1) = η(t2) = 0, the second term drops out; and after simplification,
we have

∂J

∂α
=

∫ t2

t1

(
∂f

∂y
− d

dt

[
∂f

∂ẏ

])
η(t) dt.

Since J has a minimum at α = 0, ∂J/∂α must equal zero when α = 0. Since
the function η(t) is arbitrary, we must have

∂f

∂y
− d

dt

[
∂f

∂ẏ

]
= 0. (Euler’s equation).

Euler’s equation gives a necessary condition for J to have a minimum.
For the arclength example, f =

√
1 + (ẏ)2 and ∂f/∂y = 0, so Euler’s equa-

tion specifies that
d

dt

[
∂f

∂ẏ

]
=

d

dt

[
ẏ√

1 + (ẏ)2

]
= 0,

or
ẏ√

1 + (ẏ)2
= c (where c is a constant).

2
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Solving for ẏ, we find that

ẏ =

√
c2

1 − c2
= constant,

and hence y must be linear.

Exercise

1. Use Euler’s equation to find the function y that minimizes

J =
∫ t2

t1

(
1
2 ẏ2 + y

)
dt,

where y satisfies the initial conditions y(0) = y0, ẏ(0) = ẏ0.

3. Hamiltonian Dynamics and Phase Space
If an object’s motion is constrained to one dimension, the position of the

object at time t is given by an ordinary real valued function y(t). In Newtonian
dynamics, the motion of the object is analyzed by consideration of the total
force acting on the object and Newton’s Second Law:

Force = mass · acceleration = mÿ(t).

In Hamiltonian dynamics, the object’s motion is obtained by consideration
of total energy rather than total force. For simplicity, we assume that the object’s
kinetic energy T is a function of the object’s position y(t) and momentum mẏ
(the object’s mass m is a constant). The object’s potential energy, on the other
hand, depends only on its position y(t). Thus, we may write

T = T (y, ẏ), U = U(y).

In particular, we assume that neither T nor U has a direct dependence on
time t. Hamilton’s principle tells us that the object “moves in such a way that
the time integral of the difference between its kinetic and potential energies
is minimized” [Marion and Thornton 1995]. In other words, the integral J =∫ t2

t1
L dt, where L = T − U , is minimized (L is called the Lagrangian). Taking

f{y, ẏ; t} = L(y, ẏ, t) = T (y, ẏ) − U(y), Euler’s equation implies that(
∂T

∂y
− dU

dy

)
− d

dt

[
∂T

∂ẏ

]
= 0,

which leads to the equality

∂T

∂y
=

dU

dy
+

d

dt

[
∂T

∂ẏ

]
.

3
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The total derivative of L indicates how L changes as the object moves
through time. We compute this total derivative as follows:

dL

dt
=

∂T

∂y
ẏ +

∂T

∂ẏ
ÿ − dU

dy
ẏ

=
(

dU

dy
+

d

dt

[
∂T

∂ẏ

])
ẏ +

∂T

∂ẏ
ÿ − dU

dy
ẏ

=
d

dt

[
∂T

∂ẏ

]
ẏ +

∂T

∂ẏ
ÿ

=
d

dt

[
∂T

∂ẏ
ẏ

]
.

Hence, the object moves through time in such a way that

d

dt

(
L − ∂T

∂ẏ
ẏ

)
= 0,

or equivalently,

L − ∂T

∂ẏ
ẏ = constant = −H.

The H in the last equality is the value of the object’s Hamiltonian. The Hamil-
tonian is dependent on the object’s dynamical conditions (kinetic energy and
potential energy). Different objects may therefore have different values for the
Hamiltonian, but the same object maintains a single value of the Hamiltonian
throughout its motion.

We will now show that for the simple dynamics under consideration in this
Module, the Hamiltonian H represents total energy (that is, it is the sum of the
kinetic energy T and potential energy U ). We assume that the kinetic energy
of an object is given by T = 1

2m(ẏ)2, and therefore

∂T

∂ẏ
= mẏ.

It follows that
ẏ

∂T

∂ẏ
= mẏ2 = 2T.

Hence,
−H = L − 2T = T − U − 2T.

Our desired result follows by elementary algebra:

H = T + U.

Since the value of H remains constant when describing the motion of an object,
the total energy of the object must be conserved.

4
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Whereas the Lagrangian is expressed as a function of y, ẏ, and t, the Hamil-
tonian should be expressed as a function of q, p and t, where

q = y, p =
∂L

∂ẏ
.

(Later, when defining Hamilton’s equations, we shall see that the use of“conjugate
variables” p and q gives rise to a nice symmetry in expressions for ∂H/∂q and
∂H/∂p.)

In our case, L = 1
2m(ẏ)2 − mgy, so that p = ∂L/∂ẏ = mẏ. Thus, the

Hamiltonian may be expressed as

H = H(q, p, t) =
p2

2m
+ mgq.

(Here there is no direct dependence of the Hamiltonian on time t. In general,
the Hamiltonian of an isolated dynamical system without energy dissipation
is independent of time.)

This Hamiltonian arises in the idealized motion of ball with mass m falling
freely with constant gravitational acceleration−g (i.e. we neglect air resistance).
For simplicity, we take m = 1 and g = 1. Let y(t) be the height of a ball at time
t. In Newtonian mechanics, by anti-differentiating the acceleration, we obtain
both the height and the velocity of the ball at arbitrary time t given the initial
velocity v0 and the initial position y0:

d2y

dt2
= −1,

dy

dt
= −t + v0, y(t) = −1

2
t2 + v0t + y0.

Thus, we may describe the motion of the ball as tracing the right half of a
vertical parabola in which the height y of the ball is on the vertical axis and the
time t is on the horizontal axis (see Figure 1).

t

y p

q

Figure 1. Freely-falling ball’s motion described in terms of time t vs. height y (left) and in terms of
height q vs. momentum p (right).

In Hamiltonian dynamics, we describe the motion of the ball using the
coordinates

(
q(t), p(t)

)
, where q(t) is the position of the ball at time t (i.e.,

q(t) = y(t)) and p(t) is, in this simple case, the momentum of the ball at time t

5
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(i.e., p(t) = mẏ = ẏ since m = 1). The motion of the ball in the q-p plane traces
the bottom half of a horizontal parabola (see Figure 1 and Exercise 3). The q-p
plane is called a two-dimensional phase space, and it is the setting in which we
discuss Liouville’s theorem in the next section.

Since the Hamiltonian H is the sum of the kinetic and potential energies
(H = p2/2 + q), one can verify that (Exercise 4)

∂H
∂q

= −dp

dt
,

∂H
∂p

=
dq

dt
. (Hamilton’s equations).

These equations are fundamental in Hamiltonian dynamics; we use them in
the next section when we derive Liouville’s theorem.

Exercises

2. Consider a ball with mass m that falls freely under the influence of constant
gravity (i.e., without air resistance). Let y(t) (t ≥ 0) be the height of the ball
at time t. The kinetic energy of the ball is

T (ẏ) = 1
2m(ẏ)2,

and its potential energy is
U(y) = mgy,

where −g is the constant acceleration due to gravity.
a) Find a simple differential equation for y that is obtainable from Euler’s

equation.
b) Check that the the total energy E = T + U is conserved, by computing

dE/dt and simplifying using the answer to part a).

3. Consider a ball with unit mass that at t = 0 is dropped from rest at a height
of 1, so that (q0, p0) = (1, 0). Assuming constant acceleration −g = −1,
show that in the two-dimensional q-p phase plane, the freely-falling ball’s
motion is along the horizontal parabola q = 1 − 1

2p2.

4. Verify Hamilton’s equation for the case of a freely-falling ball. That is, show
that

∂H
∂q

= −dp

dt
,

∂H
∂p

=
dq

dt
.

4. Derivation of Liouville’s Theorem in Two
Dimensions

Intuitively, Liouville’s theorem in two dimensions says that

a large collection of phase points will always occupy the same amount of
area, no matter how the shape of the area they occupy may change.

6
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In other words, the density of a large collection of phase points does not change
with time, even though the region in phase space formed by these phase points
usually will change with time. (see Figure 2).

R
p

q

R

1

2

Figure 2. The phase points forming region R1 at time t1 form region R2 at time t2. The shape of
the region changes but not the amount of area or the density of phase points.

We now introduce the concept of a phase space density function ρ, which may
be evaluated at any phase point (q, p) and at any time t. For a small region
in phase space, the phase density is the number of phase points in that region
divided by the area of the region. Since the density ρ is dependent on q, p, and
t, we write ρ = ρ(q, p; t). Furthermore, we are interested in how the density
changes as we move with the flow of points through phase space. In other
words, we must compute the change in value of the density ρ as we move with
a phase point along its path

(
q(t), p(t)

)
through phase space. Since we allow q

and p to change with time, we write ρ = ρ
(
q(t), p(t); t

)
.

Liouville’s theorem in two dimensions asserts that the total derivative dρ/dt
is zero. This means that the density will remain constant in the following sense.
If at time t0 we evaluate the density of an object at its phase point

(
q(t0), p(t0)

)
,

and at any later time t we evaluate the density at the object’s new phase point(
q(t), p(t)

)
, we will obtain the same number.

By the chain rule for derivatives, we have

dρ

dt
=

∂ρ

∂q
q̇ +

∂ρ

∂p
ṗ +

∂ρ

∂t
.

Hence, one way of proving that dρ/dt equals zero is to show that

∂ρ

∂t
= −

(
∂ρ

∂q
q̇ +

∂ρ

∂p
ṗ

)
,

where ∂ρ/∂t is the rate of change of phase density with time if we keep fixed
the point of evaluation (q, p). To compute ∂ρ/∂t, we consider the flow of phase
points through a small rectangular area element of phase space. We position
the bottom left corner of the rectangle at (q, p) and give the area element a
horizontal length dq and vertical length dp (see Figure 3), so that the area of the
rectangle is dq dp. Phase points flow in and out of this rectangle, with the net

7
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(q,p)
 p (q,p)

 . 

(q,p)

 . 
 q 

 p 
 . 

(q,p+dp)

 . 
(q+dq,p) q 

dp

p+dp

p

q q+dq

(q,p+dp) (q+dq,p+dp)

dq

(q+dq,p)

Figure 3. Diagram for computation of ∂ρ/∂t.

rate of change (i.e., the increase in the number of phase points per unit time)
for this area element being given by ∂ρ/∂t dq dp .

The number of phase points flowing in through the bottom of the rectangle
per unit time is given by the expression ρṗ |(q,p) dq (the notation |(q,p) indicates
that both ρ and ṗ are to be evaluated at the phase point (q, p)). This expression is
the product of ṗ (the vertical component of the flow velocity at the point (q, p))
with the horizontal length dq and the density function ρ. Similarly, the amount
flowing in the left is ρq̇ dp, where we keep in mind that both the density ρ and
speed q̇ are evaluated at the point (q, p).

Assuming that the vertical component of velocity of the phase points is
constant along the top of the rectangle, the amount flowing out the top is
ρṗ |(q,p+dp) dq. Analogous to the fact that the linear approximation f(x + h) ≈
f(x) + f ′(x)h becomes exact as h approaches zero, the linear approximation

ρṗ |(q,p+dp)≈ ρṗ |(q,p) +
∂

∂p
[ρṗ] |(q,p) dp

becomes exact as dp approaches zero. It follows that the number of phase points
flowing out the top is given by

ρṗ |(q,p) dq +
∂

∂p
[ρṗ] |(q,p) dp dq

where the point of evaluation is (q, p). The number of phase points out the
right can be computed using the same reasoning and is therefore given by

ρq̇ dp +
∂

∂q
[ρq̇] dq dp,

where the point of evaluation, (q, p), has been assumed.

8
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The total change in number of phase points in the area element per unit
time is equal to the rate phase points flow in minus the rate that they flow out.
Hence, we obtain the following expression for ∂ρ/∂t dq dp:

∂ρ

∂t
dp dq = ρṗ dq + ρq̇ dp −

(
ρṗ dq +

∂

∂p
[ρṗ] dp dq

)

−
(

ρq̇ dp +
∂

∂q
[ρq̇] dq dp

)
.

The first term in the right side of the equation represents the amount that flows
in the bottom, the second term represents the amount that flows in the left, the
third represents the amount that flows out the top, and the last term represents
the amount that flows out the right. Cancelling and simplifying leads to

∂ρ

∂t
dp dq = −

(
∂

∂p
[ρṗ] +

∂

∂q
[ρq̇]

)
dq dp,

∂ρ

∂t
= −

(
∂

∂p
[ρṗ] +

∂

∂q
[ρq̇]

)
,

∂ρ

∂t
= −

(
∂ρ

∂p
ṗ + ρ

∂ṗ

∂p
+

∂ρ

∂q
q̇ + ρ

∂q̇

∂q

)
.

The last step uses the product rule for partial derivatives.
Next, because ṗ = −∂H/∂q and q̇ = ∂H/∂p in Hamiltonian dynamics, we

may substitute, so that

∂ρ

∂t
= −

(
∂ρ

∂p
ṗ + ρ

∂

∂p

[
−∂H

∂q

]
+

∂ρ

∂q
q̇ + ρ

∂

∂q

[
∂H
∂p

])
.

The second and fourth terms cancel due to the equality of mixed partials, so
we get

∂ρ

∂t
= −

(
∂ρ

∂p
ṗ +

∂ρ

∂q
q̇

)
.

Substituting this expression for ∂ρ/∂t into the total derivative dρ/dt given at
the onset results in

dρ

dt
=

∂ρ

∂q
q̇ +

∂ρ

∂p
ṗ +

∂ρ

∂t

=
∂ρ

∂q
q̇ +

∂ρ

∂p
ṗ −

(
∂ρ

∂p
ṗ +

∂ρ

∂q
q̇

)
= 0.

This proves Liouville’s theorem and confirms that the density does not change
if at the initial time t0 we evaluate it at the point (q(t0), p(t0)) and at any later
time t we evaluate it at the point (q(t), p(t)).

9
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There is a simple relationship between the density ρ(q, p; t) and a probability
distribution f(q, p; t). Let N be the total number of phase points in the phase
space. Then we have

f(q, p; t) =
ρ(q, p; t)

N
.

In other words, the number of phase points in an area dq dp is given by ρ dq dp,
whereas the probability of finding a phase point in the same area is f dq dp. It is
then simple to show (Exercise 5) that Liouville’s theorem may be expressed in
its probability distribution form as df/dt = 0. The two-dimensional probability
distribution surface z = f(p, q; t) moves with the flow of phase points in such
a way that the height of the surface above each particular phase point remains
constant as that phase point moves through phase space.

Exercise

5. Prove the probability distribution form of Liouville’s theorem. That is, show
that df/ft = 0, where f(p, q; t) is a probability distribution function for a
two-dimensional phase space. (Josiah Willard Gibbs (1839–1903) of Yale
University is given credit for being the first to derive explicitly the general
probability distribution form of Liouville’s theorem [Binney and Tremaine
1987]. Gibbs was also the first to recognize that this theorem could be
applied to astrophysics. We discuss this idea further in Section 6.)

5. A Simple Illustration Using Three Freely-
Falling Balls

Let F(q, p) be the vector field that gives the “velocity” of a phase point (q, p)
in two-dimensional phase space. In other words,

F(q, p) =
〈

dq

dt
,
dp

dt

〉
.

Hence we may write

F(q, p) =
〈

∂H
∂p

,−∂H
∂q

〉
.

The divergence of F is zero, as we can see from the following:

∇ · F =
∂

∂q

[
∂H
∂p

]
+

∂

∂p

[
−∂H

∂q

]

=
∂2H
∂q ∂p

− ∂2H
∂p ∂q

= 0.

A vector field whose divergence is zero at each point is said to be incompressible.
This means that a collection of phase points forming a region with a certain area
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at time t0, will move through phase space in such a way that the area occupied
by these points will be the same at any later time t. This result may also be
obtained as a special case of Liouville’s theorem in which the distribution f is
uniform (or constant) on an area region A in q-p phase space (Exercise 7).

We may illustrate the incompressibility of phase flow in the following way.
Let us consider three freely-falling balls A, B, and C whose initial positions in
phase space are

A0 = (1, 0), B0 = (1.5,−1), C0 = (2.5,−1).

We may think of balls B and C as having been released from heights y = 2
and y = 3, respectively, one second before ball A is released from rest at height
y = 1. Note that the area of the triangle 	A0B0C0 is (0.5)(1)(1) = 0.5 square
units (see Figure 4).

q

B

1B

A 1

C 1

0C

A 0

(0,−2)

(0.5,−1)

(1,−2)

(1.5,−1) (2.5,−1)

(1,0)

p

0

Figure 4. A special case of Liouville’s theorem implies that the areas of triangles A0B0C0 and
A1B1C1 must be the same.

A phase point initially at
(
q0, p0

)
will be at the new phase point

(q(t), p(t)) =
(− 1

2 t2 + p0t + q0, p0 − t
)

after an amount of time t. Hence, after one second, the phase points that form
	A0B0C0 will form 	A1B1C1, where

A1 = (−0.5 + 1,−1) = (0.5,−1)
B1 = (−0.5 − 1 + 1.5,−2) = (0,−2)
C1 = (−0.5 + 2.5 − 1,−2) = (1,−2).

With a little thought about the physical motion of freely-falling balls, one real-
izes that all of the representative phase points on or inside 	A0B0C0 at time

11
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t = 0 must be on or inside 	A1B1C1 at time t = 1. Furthermore, no point
outside 	A0B0C0 at time t = 0 will be on or inside 	A1B1C1 at time t = 1.
Since the flow of phase points is incompressible (∇·F = 0), the areas of the two
triangles must be the same. Indeed, both triangles have an area of 0.5 square
units as can be seen in Figure 4.

Exercises

6. Find	A2B2C2, which is formed after two seconds by the points of the phase
space initially in 	A0B0C0, and show that the area of 	A0B0C0 equals the
area of 	A2B2C2.

7. Let A(t0) be an area region formed by a collection of phase points at time
t0. Let A(t) be the area region occupied by these phase points at any later
time t. Use the probability distribution form of Liouville’s theorem to prove
that area(A(t0)) = area(A(t)).

6. Further Applications

6.1 Charged-Particle Accelerators
Particle accelerators attempt to create subatomic particles and interactions;

in addition, they are used in a remarkable variety of practical applications (see
[Wilson 2001]), including

• manufacturing of such diverse products as computer disks, shrink-wrap,
automobile tires and telephone cables;

• purification of food stuffs, drinking water and surgical tools; and

• in medical procedures such as diagnostic imaging systems and radiation
therapy techniques.

A simple case occurs when the beam circulates around an accelerator with
constant energy. A cross section of such a beam may be represented by an
ensemble of particles in two-dimensional q-p phase space, forming an elliptical
region. Because the particles are charged, they can be focused by an arrange-
ment of magnets, much as a light beam can be focused by geometric lenses.
Since the magnetic force is conservative, by Liouville’s theorem the shape of
the elliptical-region in phase space may change during focusing but its area
remains constant (Figure 5). An important quantity called the emittance of a
beam is proportional to the area of the region occupied by the points in phase
space. Hence, the emittance remains constant during the focusing of a constant
energy beam.

12
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q

p

q

p

Figure 5. A cross section of particles in a constant-energy beam may be represented by an elliptic
region in phase space. Liouville’s theorem says that the area of the region occupied in phase space
remains constant. Hence, the beam’s emittance, which is proportional to the area, is also constant.

6.2 Galactic Dynamics
Two years after Liouville’s death in 1882, Josiah W. Gibbs (1839–1903), a

mathematical physicist at Yale University, recognized that the probability dis-
tribution form of Liouville’s theorem could be applied to astronomy. Liouville’s
theorem arises within galactic dynamics in at least three different settings [Bin-
ney and Tremaine 1987]:

6.2.1 Analyzing Motion of Stars

A star moving within a galaxy may be represented by a phase point moving
within a phase space with three position and three momentum coordinates.
In this context, the number density function ρ = ρ(q(t), p(t), t) with q(t) =(
q1(t), q2(t), q3(t)

)
and p(t) =

(
p1(t), p2(t), p3(t)

)
is used to specify the number

ρ dq dp of stars within a small volume dq and momentum range dp centered at
(q, p). Liouville’s theorem asserts that dρ/dt = 0, or, in other words, the number
density remains the same around the phase point representing a given star.

6.2.2 Describing Macroscopic Properties

A galactic system with N stars may also be represented by a 6N -dimensional
phase space called a Γ-space; a point (w1, w2, ..., wN ) in this phase space is called
a Γ-point. The ith coordinate wi of a Γ-point describes the position and mo-
mentum of a particular star. Different Γ-points may correspond to the same
set of macroscopic galactic properties (density distribution, velocity distribu-
tion, number of binary stars etc.) Collectively, Γ-points giving rise to the same
set of macroscopic properties are called an ensemble. The N -particle distribution
function f (N) = f (N)(w1, ..., wN , t) is then used to obtain the probability that
a Γ-point belonging to an ensemble is found in a region D of Γ-space at time
t. (One finds the probability by integrating f (N) over D.) The evolution of a
galactic ensemble is therefore described by the evolution of its distribution f (N),
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the latter being constrained by the probability distribution form of Liouville’s
theorem (df (N)/dt = 0).

6.2.3 Modeling the Dynamics in a Cluster of Galaxies

On a massive scale, the dynamical motion of thousands of galaxies com-
prising a gigantic cluster may be modeled in a similar way to the motion of
stars within a galaxy, hence creating a third setting for Liouville’s theorem to
be applied. Clusters continue to be an important site for the investigation into
the existence, nature and distribution of enigmatic dark matter. Thirteen differ-
ent clusters, including the Coma cluster and Abel 2142, have been studied by
the Chandra X-ray observatory [Harvard-Smithsonian Center for Astrophysics
2003] since it was first deployed in 1999 by the space shuttle Columbia.

7. Solutions to the Exercises

1. Euler’s equation implies that ÿ = 1. It follows by antidifferentiation that
y = y0 + ẏ0t + 1

2 t2.

2. a) According to Hamilton’s principle, the ball falls so that the integral of
the difference between its kinetic and potential energy is minimized.
Letting f(y, ẏ; t) = 1

2mẏ2 − mgy, Euler’s condition becomes

−mg − d

dt
(mẏ) = 0,

mg + mÿ = 0,

ÿ = −g.

b) E = 1
2mẏ2 + mgy, so dE/dt = mẏÿ + mgẏ = mẏ(−g) + mgẏ = 0.

3. The motion in the q-p phase plane will be along the parabola q = − 1
2p2 + 1,

since
dy

dt
= p = −t,

y = q = − 1
2 t2 + 1 = − 1

2p2 + 1.

4. Assume that the ball has mass m and constant acceleration −g. The Hamil-
tonian H is given by H = p2/2m+mgq. Hence, ∂H/∂q = mg and ∂H/∂p =
p/m. We also have that

Force = −mg =
dp

dt
,

Velocity =
dq

dt
=

p

m
.

It follows that ∂H/∂q = −dp/dt and ∂H/∂p = dq/dt.
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5. df

dt
=

1
N

dρ

dt
= 0.

6. A2 = (−1,−2), B2 = (−2.5,−3), C2 = (−1.5,−3). Area of 	A2B2C2 is 0.5.

7. Let area
(
A(t0)

)
= k and let f(p, q, t0) = 1/k for all (p, q) ∈ A(t0) and zero

otherwise. By Liouville’s theorem, f(p, q, t) = 1/k for all (p, q) ∈ A(t) and
zero otherwise. Since the total probability is equal to one, area A(t)) = k,
and we conclude that area(A(t)) = area(A(t0)).
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